
http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Video chapters
Chapter-1 (INTRODUCTION TO COMPILER): Phases and passes, Bootstrapping, Finite state machines and regular expressions and
their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-
analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The
syntactic specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG.

Chapter-2 (BASIC PARSING TECHNIQUES): Parsers, Shift reduce parsing, operator precedence parsing, top down parsing,
predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing
SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an
automatic parser generator, implementation of LR parsing tables.

Chapter-3 (SYNTAX-DIRECTED TRANSLATION): Syntax-directed Translation schemes, Implementation of Syntax- directed
Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples, translation
of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a
top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations and case
statements.

Chapter-4 (SYMBOL TABLES): Data structure for symbols tables, representing scope information. Run-Time Administration:
Implementation of simple stack allocation scheme, storage allocation in block structured language. Error Detection & Recovery:
Lexical Phase errors, syntactic phase errors semantic errors.

Chapter-5 (CODE GENERATION): Design Issues, the Target Language. Addresses in the Target Code, Basic Blocks and Flow Graphs,
Optimization of Basic Blocks, Code Generator. Code optimization: Machine-Independent Optimizations, Loop optimization, DAG
representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Chapter-1
(INTRODUCTION TO COMPILER): Phases and passes,
Bootstrapping, Finite state machines and regular expressions
and their applications to lexical analysis, Optimization of DFA-
Based Pattern Matchers implementation of lexical analyzers,
lexical-analyzer generator, LEX compiler, Formal grammars and
their application to syntax analysis, BNF notation, ambiguity,
YACC. The syntactic specification of programming languages:
Context free grammars, derivation and parse trees, capabilities
of CFG.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Language Processing System
• We tend to write programs in high-level language, that is much less complicated

for us to comprehend and maintain in thoughts. These programs go through a
series of transformation so that they can readily be used in machines. This is
where language processing systems come handy.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

High Level Language

• If a program contains #define or #include directives
such as #include or #define it is called HLL.

• They are closer to humans but far from machines.

• These (#) tags are called pre-processor directives.
They direct the pre-processor about what to do.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Pre-Processor
• The pre-processor removes all the #include directives by including the files

called file inclusion.

• All the #define directives using macro expansion. It performs file inclusion,
macro-processing, short hand operators etc.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Pure High-Level Language

• That HLL which can be directly understood by
the compiler.

डालडा देसी

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Compiler
• A compiler is a computer program that translates

computer code written in one programming language
(the source language) into another language (the target
language).

• The name compiler is primarily used for programs that
translate source code from a high-level programming
language to a lower level language (e.g., assembly
language) to create an executable program.

• The reason is we are not comfortable in writing a low-
level language there for we write a code which is easy
and then convert it into low level language.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Compiler Design

• We basically have two phases of compilers, namely
Analysis phase and Synthesis phase.
o Analysis phase creates an intermediate

representation from the given source code.
o Synthesis phase creates an equivalent target

program from the intermediate representation.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Assembly Language

• Its neither in binary form nor high level.

• It is an intermediate state that is a combination
of machine instructions and some other useful
data needed for execution.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Assembler

• For every platform (Hardware + OS) we will have an
assembler. They are not universal since for each platform
we have one.

• The output of assembler is called object file. It translates
assembly language to machine code.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate
8085 Microprocessor

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Relocatable Machine Code

• It can be loaded at any point and can be run.

• The address within the program will be in such a
way that it will cooperate for the program
movement.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

if(a<b) then t=1
else t = 0

i) if (a<b) goto (i+3)
i+1) t=0
i+2) goto (i+4)
i+3) t=1
i+4) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

while(C) do S

i) if (E) goto i+2
i+1) goto i+4
i+2) S
i+3) goto i
i+4) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

for(1=0; i<10 ; i++)
 s

i) i = 0
i+1) if(i<10) goto i+3
i+2) goto i+6
i+3) S
i+4) i = i + 1
i+5) goto i+1
i+6) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Linker à Loader
• It converts the relocatable code into absolute code and tries to run the program resulting in a

running program or an error message.

• Linker loads a variety of object files into a single file to make it executable. Then loader loads it
in memory and executes it.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The first practical compiler was written by Corrado
Böhm, in 1951, for his PhD thesis.

• The first implemented compiler was written by Grace
Hopper, who also coined the term "compiler", referring to
her A-0 system which functioned as a loader or linker, not
the modern notion of a compiler.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The first Autocode and compiler in the modern sense
were developed by Alick Glennie in 1952 at
the University of Manchester for the Mark 1 computer.

• The FORTRAN team led by John W. Backus at IBM introduced
the first commercially available compiler, in 1957, which took
18 person-years to create.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Lexical Analyzer

• It reads the program and converts it into Lexemes.

• A stream of lexemes into a stream of tokens.

• Tokens are defined by regular expressions which are
understood by the lexical analyser. It also removes
white-spaces and comments.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Float x, y, z;
x = y+ z*60

X à token à identifier
= à token à operator
Y à token à identifier
+ à token à operator
Z à token à identifier
* à token à operator
60 à token à constant

id1 = id2 + id3 * 60

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Syntax Analyzer

• It is sometimes called as parser.

• It constructs the Parse/Syntax tree.

• Uses productions of Context Free Grammar
to construct the parse tree.

• It reads all the tokens one by one.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à id = E
E à E + T / T
T à T * F / F
F à id / num

id1 = id2 + id3 * 60

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Semantic Analyzer

• It verifies the parse tree, whether it’s
meaningful or not.

• It furthermore produces a verified /
Annotated parse tree.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Intermediate Code Generator

• It generates intermediate code, that is a form
which can be readily understood by machine.

• We have many popular intermediate codes.
Example – Three address code etc.

• Intermediate code is converted to machine
language using the last two phases which are
platform dependent.

• Till intermediate code, it is same for every
compiler out there, but after that, it depends on
the platform.

• To build a new compiler we don’t need to build it
from scratch. We can take the intermediate code
from the already existing compiler and build the
last two parts.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• x = y+ z*60
t1 = z * 60
t2 = y + t1
x = t2

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Code Optimizer

• It transforms the code so that it
consumes fewer resources and produces
more speed.

• The meaning of the code optimizer is
code being transformed is not altered.

• Optimisation can be categorized into
two types: machine dependent and
machine independent.

t1 = z * 60
x = y + t1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Target Code Generator

• The main purpose of Target Code generator is to
write a code that the machine can understand
and also register allocation, instruction selection
etc.

• The output is dependent on the type of
assembler. This is the final stage of compilation.

MOV R1, Z
MUL R1, 60
ADD R1, Y
STORE X, R1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Symbol Table

• It is a data structure being used and
maintained by the compiler, consists all the
identifier’s name along with their types.

• It helps the compiler to function smoothly
by finding the identifiers quickly.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The compiler has two modules namely front end and back end. Front-end
constitutes of the Lexical analyser, semantic analyser, syntax analyser and
intermediate code generator. And the rest are assembled to form the back end.

• In general Front end fill symbol table and back end uses it.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

(1) int x = 10;

• Lexical analysis in the first phase to communicate with the symbol and the compiler generate
the symbol table during the lexical analysis phase.

• Compiler is responsible to provide the memory for symbol table. at every phase if any new
variable occurs, then they will be stored in the symbol table.

• Every phase of the compiler will be interacting with the symbol table.

• In general, during the first two phases, we store the information in the symbol table and in the
memory and in the later phases, we make use of the information available in symbol table.

Line No Keyword identifier Constant Operator
1 int x 10 ;

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Information stored in the symbol table about identifier
• name
• type
• scope
• size
• offset

• Other information in case of array, records and procedures etc.
• array à size
• records à column names
• procedure à i/p parameter
• functions à i/p, o/p parameter, actual, formal parameter

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Operation on the symbol table: - there are 4 operation function that
can be performed on symbol table
• insert
• lookup/search
• Modify
• delete

• Implementation of symbol tables can be done using anyone of the
data structure
• liner table
• Binary Search Tree
• Linked List
• Hash Table (most popular)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Error handler
• It is a sub routine to care take care of the

continuation of compilation, even any error at
any phase, i.e. error handler is responsible to
continue the compilation process even any
error occurs at phase 1 or phase 2 or phase 3.

• After phase 3, if the error handler object is
empty, then the source code is free error and it
can be converted into target code. if the error
handler object is not empty after phase 3 then
there will be some error at phase 1,2 or 3 then
the error will be displayed.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Compiler can handle, there types of
errors: -
• lexical error
• syntax error
• semantic error

• The error handles by compiler are
known as exception and programmer
is responsible to handle the exception.

• At the time of execution also, we can
get some error they are called fatal
error and system admin is responsible
to handle fatal error.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Phases and Passes
• A compiler can have many phases and passes.

• Pass: A pass refers to the traversal of a compiler
through the entire program.

• Phase: A phase of a compiler is a distinguishable
stage, which takes input from the previous stage,
processes and yields output that can be used as
input for the next stage. A pass can have more
than one phase.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Single Pass Compiler

• One-Time Processing: Reads and processes the source code in a single pass, translating it
directly into machine code.

• Speed Advantage: Faster than multi-pass compilers due to the single traversal of the source
code.

• Memory Efficient: Uses less memory as it doesn't store extensive intermediate state
information.

• Optimization Limitations: Offers limited optimization capabilities due to less context
understanding of the entire program.

• Best for Simple Languages: Ideal for simpler programming languages where complex analysis
and deep optimization are not required.

• Early FORTRAN Compilers, Pascal (Original Version), Tiny C Compiler (TCC)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Multi-Pass Compiler

• A multi-pass compiler is a type of compiler that processes the source code multiple times
before producing the final output. Here's a quick rundown in bullet points:
• Multiple Scans of Source Code: It processes the source code in several passes, each for a

specific analysis or transformation task.
• Advanced Optimization: Multi-pass compilers perform complex optimizations by analyzing

and re-analyzing the code, improving performance or minimizing resource usage.
• Context Awareness: They have a deeper understanding of the program's context, which

allows for more sophisticated error checking and optimization.
• Memory Usage: They typically require more memory than single-pass compilers, as they

need to maintain intermediate representations of the source code between passes.
• Examples: Modern compilers like GCC (GNU Compiler Collection) and LLVM are multi-pass

compilers that provide extensive optimization and support for complex language features.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Aspect Single-Pass Compiler Multi-Pass Compiler

Compilation Speed Generally faster as it compiles the
source code in one pass.

Slower, as it goes through the source
code multiple times.

Memory Usage
Less memory-intensive because it
doesn't store much intermediate
data.

More memory-intensive due to the
need to store intermediate
representations.

Error Detection May not detect all errors in the
first pass.

Better at error detection, as it analyzes
the code in more depth over multiple
passes.

Optimization Limited optimization opportunities
due to the single pass nature.

Better optimization, as multiple passes
allow for more analysis and
refinement.

Language Complexity
Suited for simpler languages with
less complex syntax and
semantics.

Better for complex languages, as it can
handle intricate syntax and semantics
more effectively.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Bootstrapping
• Bootstrapping in compiler design is a fascinating and critical concept.
• Historical Context

• Early Stages: Initially, compilers were written in assembly language or a low-
level language specific to the hardware.

• Evolution: As programming languages evolved, the need for writing compilers
in a higher-level language became evident.

• Bootstrapping Emergence: Bootstrapping was introduced as a solution to this
need. It refers to writing a compiler in the same language it intends to
compile.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Concept
• Initial Step: A simple compiler is first written in a low-level language.

This is often termed as the "bootstrap compiler."
• Self-Compiling: The compiler is then rewritten in its own higher-level

language and compiled using the bootstrap compiler.
• Iteration: This process can be iterated, with each new version of the

compiler used to compile its next version.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Bootstrapping is the process of writing a compiler for a programming language using
the language itself. In other words, it is the process of using a compiler written in a
particular programming language to compile a new version of the compiler written in
the same language.

• The process of bootstrapping typically involves several stages. In the first stage, a
minimal version of the compiler is written in a different language, such as assembly
language or C. This minimal version of the compiler is then used to compile a slightly
more complex version of the compiler written in the target language. This process is
repeated until a fully functional version of the compiler is written in the target
language.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• One advantage is that it ensures that the compiler is compatible with the language it
is designed to compile. so it is better able to understand and interpret the syntax and
semantics of the language.

• Another advantage is that it allows for greater control over the optimization and code
generation process.

• One disadvantage is that it can be a time-consuming process, especially for complex
languages or compilers. It can also be more difficult to debug a bootstrapped
compiler, since any errors or bugs in the compiler will affect the subsequent versions
of the compiler.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Cross Compiler
• Suppose we want to write a cross compiler for new language X. The implementation

language of this compiler is say Y and the target code being generated is in language
Z. That is, we create XYZ. Now if existing compiler Y runs on machine M and
generates code for M then it is denoted as YMM. Now if we run XYZ using YMM then
we get a compiler XMZ. That means a compiler for source language X that generates
a target code in language Z and which runs on machine M.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Cross Compiler
• Early Computing Era: Initially, software was often developed and executed on the same type

of machine. This limited software portability across different hardware.
• Growth of Diverse Hardware: With the proliferation of various computing systems, including

microprocessors and embedded systems, the need for software compatibility across different
platforms increased.

• Development of Cross Compilers: Cross compilers were developed to address this need. They
allowed developers to write code on one machine (the host) and execute it on another (the
target), which could have a completely different architecture.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

DETERMINISTIC FINITE AUTOMATA
A deterministic finite automaton (DFA) is defined by 5-tuple (Q,S,d,S,F)
where:
• Q is a finite and non-empty set of states
• S is a finite non-empty set of finite input alphabet
• d is a transition function, (d: Q × S à Q)
• S is initial state (always one) (SÎ Q)
• F is a set of final states (F Í Q) (0<=|F|<=N, where n is the number of

states)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Construct the NFA for the regular expression a|abb|a*b+ by
using Thompson’s construction methodology?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Draw NFA for the regular expression ab*|ab ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Construct the minimized DFA for the regular expression (0 + 1)*(0 + 1) 10 ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

NFA and DFA Equivalence
• In this topic we will be learning about the equivalence of NFA and DFA and how

an NFA can be converted to equivalent DFA. Let us take an example and
understand the conversion.

• Since every NFA and DFA has equal power that means, for every language if a
NFA is possible, then DFA is also possible.

• So, every NFA can be converted to DFA.

• The process of conversion of an NFA into a DFA is called Subset Construction.

• If NFA have ‘n’ states which is converted into DFA which ‘m’ states than the
relationship between n and m will be

• 1<= m <= 2n

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Procedure for Conversion
• There lies a fixed algorithm for the NFA and DFA conversion. Following things

must be considered

• Initial state will always remain same.

• Start the construction of d’ with the initial state & continue for every new
state that comes under the input column and terminate the process
whenever no new state appears under the input column.

• Every subset of states that contain the final state of the NFA is a final state in
the resulting DFA.

• d’(q0 , q1, q2 , q3--------, qn-1,a) = ⋃!"#
!"$%& d(qi , a)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Aspect DFA (Deterministic Finite Automata) NDFA (Nondeterministic Finite
Automata)

State Transition On each input symbol, transitions to
exactly one state.

Can transition to multiple states or
none on the same input symbol.

Determinism and
Uniqueness

Each state has a unique transition for
each input symbol.

A state can have multiple transitions
for the same input symbol.

Computation Path
Always has a single, unique

computation path for any input
string.

May have multiple computation paths
for the same input string.

Ease of Construction Generally simpler and more
straightforward to construct.

Can be more complex to construct
due to non-determinism.

Acceptance of Input
Accepts an input if it reaches a final

state after processing all input
symbols.

Accepts an input if at least one
computation path reaches a final

state.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Lexical Analyzer

• lexical analysis, lexing or tokenization is the process of converting a sequence of
characters (such as in a computer program or web page) into a sequence of tokens.

http://www.knowledgegate.in/gate
https://www.geeksforgeeks.org/compiler-lexical-analysis/

http://www.knowledgegate.in/gate

Lexical Analyzer
• A lexeme is a sequence of characters in the

source program that matches the pattern for
a token and is identified by the lexical
analyzer as an instance of that token. Where
a token is a strings with an assigned and thus
identified meaning. Actual representation or
stream of characters is called as Lexemes;
Logical meaning of Lexemes is known as
Tokens.

• Lexing can be divided into two stages:
the scanning, which segments the input
string into syntactic units called lexemes and
categorizes these into token classes; and
the evaluating, which converts lexemes into
processed values.

http://www.knowledgegate.in/gate
https://www.geeksforgeeks.org/compiler-lexical-analysis/

http://www.knowledgegate.in/gate

• x = a + b * 2;

• [(identifier, x), (operator, =), (identifier, a), (operator, +), (identifier, b), (operator,
*), (literal, 2), (separator, ;)]

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Identify the meaning of the rule implemented by Lexer using regular expression
for identifying tokens of a password?
Regular Expression à A(A+S+D)3 (A+S+D+Î)4

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Implementation of Lexical analyzer
Lexical analyzer can be implemented in following step :
• Input to the lexical analyzer is a source program.
• By using input buffering scheme, it scans the source program.
• Regular expressions are used to represent the input patterns.
• Now this input pattern is converted into NFA by using finite automation machine.
• This NFA are then converted into DFA and DFA are minimized by using different method of

minimization.
• The minimized DFA are used to recognize the pattern and broken into lexemes.
• Each minimized DFA is associated with a phase in a programming language which will evaluate

the lexemes that match the regular expression.
• The tool then constructs a state table for the appropriate finite state machine and creates

program code which contains the table, the evaluation phases, and a routine which uses them
appropriately.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

lexical Analyzer Generator
• For efficient design of compiler, various tools are used to automate the phases of

compiler. The lexical analysis phase can be automated using a tool called LEX.
• LEX is a Unix utility which generates lexical analyzer.
• The lexical analyzer is generated with the help of regular expressions.
• LEX lexer is very fast in finding the tokens as compared to handwritten LEX

program in C.
• LEX scans the source program in order to get the stream of tokens and these

tokens can be related together so that various programming structure such as
expression, block statement, control structures, procedures can be recognized.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

LEX compiler
• Automatic generation of lexical analyzer is done using LEX programming language.
• The LEX specification file can be denoted using the extension .l (often pronounced as dot L).
• For example, let us consider specification file as x.l.
• This x.l file is then given to LEX compiler to produce lex.yy.c . This lex.yy.c is a C program which

is actually a lexical analyzer program.
• The LEX specification file stores the regular expressions for the token and the lex.yy.c file

consists of the tabular representation of the transition diagrams constructed for the regular
expression.

• In specification file, LEX actions are associated with every regular expression.
• These actions are simply the pieces of C code that are directly carried over to the lex.yy.c.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Generation of lexical analyzer using LEX
• Finally, the C compiler compiles this generated lex.yy.c and produces an object program a.out.

• When some input stream is given to a.out then sequence of tokens gets generated.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Components of LEX program

The LEX program consists of three parts :

Declaration section :
• In the declaration section, declaration of variable constants can be done.
• Some regular definitions can also be written in this section.
• The regular definitions are basically components of regular expressions.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Components of LEX program

• Rule section :
• The rule section consists of regular expressions with associated actions. These

translation rules can be given in the form as :
• R1 {action1}
• R2 {action2}
• .
• .
• Rn {actionn}
• Where each Ri is a regular expression and each actioni is a program fragment

describing what action is to be taken for corresponding regular expression.
• These actions can be specified by piece of C code.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Components of LEX program

• Auxiliary procedure section :
• In this section, all the procedures are defined which are required by the actions

in the rule section.
• This section consists of two functions :

• main() function
• yywrap() function

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Secondary Function of Lexical Analyser are: -

• Removal of Comments lines

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Removal of White space characters

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Co-relating with Error Messages along with line number.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Formal Grammar

A phrase-structure grammar (or simply a grammar) is a 4-tuple (VN, ∑, P, S), where
• VN is a finite nonempty set whose elements are called variables,

• ∑ is a finite nonempty set whose elements are called terminals, VN ⋂ ∑= Ф.

• S is a special variable (i.e., an element of VN (S Î Vn)) called the start symbol. Like every
automaton has exactly one initial state, similarly every grammar has exactly one start symbol.

• P is a finite set whose elements are α → β. where α and β are strings on VN ⋃ ∑. α has at least
one symbol from VN, the element of P are called productions or production rules or rewriting
rules. {Σ U Vn}* some writer refers it as total alphabet

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

For a formal valid production

 α à β

 α Î {Σ U Vn}* Vn {Σ U Vn}*

 β Î {Σ U Vn}*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

LANGUAGES AND AUTOMATA

• Following are the machines that accepts the following grammars.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Type 2 Grammar
• Also known as Context Free Grammar, which will generate context free language that will be

accepted by push down automata. (NPDA default case)

• if there is a production, from
 α à β
 α Î Vn |α| = 1
 β Î {Σ U Vn} *

• In other words, the L.H.S. has no left context or right context.

• A grammar is called a type 2 grammar if it contains only type 2 productions.

• Eg ALGOL 60, PASCAL

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Formal grammar and its application to syntax analysis

• Formal grammar represents the specification of programming language with the use of
production rules.

• The syntax analyzer basically checks the syntax of the language.
• A syntax analyzer takes the tokens from the lexical analyzer and groups them in such a way

that some programming structure can be recognized.
• After grouping the tokens if at all any syntax cannot be recognized then syntactic error will

be generated.
• This overall process is called syntax checking of the language.
• This syntax can be checked in the compiler by writing the specifications.
• Specification tells the compiler how the syntax of the programming language should be.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

BNF notation
• Backus-Naur Form (BNF) is a notation technique used to express the grammar of a computer

language. It's a formal mathematical way to describe a language, which is particularly useful in
the context of programming languages. Here's a simple explanation:

• Symbols: BNF uses two types of symbols:
• Terminal Symbols: These are the basic characters or strings in the language, like numbers,

letters, or specific words.
• Non-terminal Symbols: These represent a set of strings, and they're defined by writing

rules in BNF.

• Production Rules: A language in BNF is defined by production rules. Each rule has a left-hand
side (a non-terminal symbol) and a right-hand side, which is a sequence of terminal and/or
non-terminal symbols. The rule shows how you can replace the non-terminal with that
sequence.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Example: Let's consider a simple arithmetic expression grammar:
• Expression → Expression + Term | Term
• Term → Term * Factor | Factor
• Factor → (Expression) | Number
• Number → Digit | Number Digit
• Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• In this example, "Expression", "Term", "Factor", "Number", and "Digit" are non-
terminal symbols, while '+', '*', '(', ')', and the digits are terminal symbols.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Use in Parsing: BNF is widely used in the design and implementation of
compilers and interpreters for programming languages. It helps in building the
syntax tree of a program by parsing the source code according to the grammar
rules defined in BNF.

• Readability: BNF provides a concise and readable way to specify the syntax of a
language. It's easier to understand and modify compared to directly writing
parser code.

• Extensions: There are also extensions to BNF, like Extended BNF (EBNF), which
provides more expressive power by adding more constructs like optional
elements, repetitions, and choices.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Ambiguous grammar: - The grammar CFG is said to be ambiguous if
there are more than one derivation tree for any string i.e. if there exist
more than one derivation tree (LMDT or RMDT), the grammar is said to
be ambiguous.
S à aS/Sa/a

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

YACC (Yet Another Compiler Compiler)
• YACC (Yet Another Compiler Compiler) is a tool used in compiler construction to

generate a parser from a specified grammar. Here are the key aspects:
• Function: YACC is utilized for creating compilers or interpreters. It takes a

language's grammar (in Backus-Naur Form) and produces C code for a parser.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Structure of YACC File:
• Declarations: Defines tokens and includes necessary C code.
• Rules: Contains grammar rules with associated C actions.
• User Subroutines: Additional C functions for the parser.

• Integration with Lex: YACC is commonly used with Lex, a lexical analyzer, for
tokenization.

• Parser Type: The parser generated is a LALR(1) parser, a type of efficient bottom-
up parser.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Error Handling: YACC includes syntax error detection and recovery mechanisms.
• Advantages:

• Automates parser creation.
• Simplifies grammar modification.
• Separates syntax rules from actions.

• Applications and Alternatives: It's widely used in both academia and industry
for compiler and interpreter development. Tools like Bison offer similar
functionality with additional features.

• Understanding YACC is important for computer science students, particularly for
insights into compiler design and parsing techniques.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Defining a language by grammar

• The concept of defining a language using grammar is, starting from a start symbol using the
production rules of the grammar any time, deriving the string. Here every time during
derivation a production is used as its LHS is replaced by its RHS, all the intermediate
stages(strings) are called sentential forms. The language formed by the grammar consists of all
distinct strings that can be generated in this manner.

 L (G) = {w | w Î ∑* , S à* W}

• à*(reflexive, transitive closure) means from s we can derive w in zero or more steps

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Derivation: - The process of deriving a string is known as derivation.

• Derivation/ Syntax/ Parse Tree: - The graphical representation of
derivation is known as derivation tree.

E à E + E / E * E / E = E / id

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Sentential form: - Intermediate step involve in the derivation is known
as sentential form.

Sentential Form

E
E*E

E+E*E
ID+E*E
ID+ID*E
ID+ID*ID

E à E + E / E * E / E = E / id

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Left most derivation: - the process of construction of parse tree by expanding
the left most non terminal is known as LMD and the graphical representation of
LMD is known as LMDT (left most derivation tree)

LMD
E à E + E E
Eà E * E E*E
Eà E = E E+E*E

Eà id ID+E*E
Eà id ID+ID*E
Eà id ID+ID*ID

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Right most derivation: - the process of construction of parse tree by expanding
the right most non terminal is known as RMD and the graphical representation
of RMD is known as RMDT (right most derivation tree)

RMD
E à E + E E
Eà E * E E+E
Eà E = E E+E*E

Eà id E+E*ID
Eà id E+ID*ID
Eà id ID+ID*ID

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Capabilities of CFG

Context-Free Grammar (CFG) plays a vital role in computer science for describing programming
language syntax and creating efficient parsers:
• Programming Languages: CFGs effectively describe the syntax of most programming

languages, organizing elements like statements, expressions, and declarations.
• Efficient Parser Construction: A well-designed CFG enables the automatic generation of

efficient parsers, essential for code analysis and interpretation.
• Associativity and Precedence: CFGs handle associativity and precedence in expressions,

ensuring correct interpretation of operations and expression hierarchies.
• Nested Structures: CFGs excel in depicting nested structures common in programming

languages, like balanced parentheses, matching begin-end blocks, and nested if-then-else
statements.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Chapter-2
(BASIC PARSING TECHNIQUES): Parsers, Shift reduce
parsing, operator precedence parsing, top down parsing,
predictive parsers Automatic Construction of efficient
Parsers: LR parsers, the canonical Collection of LR(0)
items, constructing SLR parsing tables, constructing
Canonical LR parsing tables, Constructing LALR parsing
tables, using ambiguous grammars, an automatic parser
generator, implementation of LR parsing tables.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Syntax analysis
• In Syntax analysis input is stream of tokens and output is syntax tree. The

process of construction of the parse tree/ syntax tree/ derivation tree is called as
parsing.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• For any input string which is given in the form of stream of tokens for the parser, if the
derivation tree exists, then the input string is syntactically or grammatically correct.

• If the parser cannot generate the derivation tree from the i/p string, then there must be some
grammatical mistakes in the string.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Classification of parser

• The program which perform parsing is known as parser or syntax analyzer.

• There are two types of parser
• Top-Down Parser
• Bottom Up Parser

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Parser

Top-Down Parser

With-Back Tracking

Brute Force

Without Backtracking

Predictive Parser

LL(1)

Bottom-UP
Parser

L-R Parser

LR (0) SLR(1) CLR(1) LALR(1)

Operator
Precedence Parser

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Top down parsing
• The process of construction of parse tree, starting from root and process to

children, is known as TOP down parsing, i.e. getting the i/p string by starting
with a start symbol of the grammar is top down parsing.

A à aA / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Top-Down
Parser

With-Back
Tracking

Brute Force

Without
Backtracking

Predictive
Parser

LL(1)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Non-Deterministic Grammar

• The grammar with common prefix is known as Non-Deterministic
Grammar.
• A à αβ1/ αβ2

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The grammar with common prefixes requires a lot of Back-tracking, back-
tracking is very time consuming.

• To avoid the back-tracking, we need to remove the common prefixes, i.e. we
need to convert the non-deterministic Grammar into Deterministic.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Left Factoring: - The process of conversion of Non-Deterministic
grammar into deterministic grammar is known as Left-Factoring.

• A à αβ1/ αβ2
• A à αβ
• A à β1/ β2

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Recursive production: - the production which has same variable both at left- and right-hand side
of production is known as recursive production.

SàaSb
SàaS
SàSa

Recursive grammar: - the grammar which contains at least one recursive production is known as
recursive grammar.

SàaS / a
SàSa / a
SàaSb / ab

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Left Recursive Grammar: - The grammar G is said to be left recursive, if the Left
most variable of RHS is same as the variable at LHS.

Right Recursive Grammar: - The grammar G is said to be right recursive, if the right
most variable of RHS is same as the variable at LHS.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

General recursion: - the recursion which is neither left nor right is called as general recursion. If a
CFG generates infinite number of string then it must be a recursive grammar.

Non recursive grammar: - the grammar which is free from recursive production is called as non-
recursive grammar.
SàAaB
Aàa
Bàb

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• If a CFG contains left recursion then the compiler may go to infinite loop, hence
to avoid the looping of the compiler, we need to convert the left recursive
grammar into its equivalent right recursive production.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

A à Aα / β1 / β2 -------/ βn

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

A à Aα1 / Aα2 /----------Aαn / β

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

A à Aα1 / Aα2 /----------Aαn / β1 / β2 -------/ βm

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Ambiguous grammar: - The grammar CFG is said to be ambiguous if
there are more than one derivation tree for any string i.e. if there exist
more than one derivation tree (LMDT or RMDT), the grammar is said to
be ambiguous.
S à aS/Sa/a

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Grammar which is both left and right recursive is always ambiguous,
but the ambiguous grammar need not be both left and right recursive.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Top down parser uses, left most derivation.

• Left most derivation: - The process of construction of parse tree by expanding
the left most non terminal is known as LMD and the graphical representation of
LMD is known as LMDT (left most derivation tree).

A à AaA / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The TDP is constructed for the grammar, if it is free from left recursion.

• Left Recursive Grammar: - The grammar G is said to be left recursive,
if the Left most variable of RHS is same as the variable at LHS.

A à Aa / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The TDP is constructed for the grammar, if it is free from ambiguity.

• Ambiguous grammar: - The grammar CFG is said to be ambiguous if there are
more than one derivation tree for any string i.e. if there exist more than one
derivation tree (LMDT or RMDT), the grammar is said to be ambiguous.

E à E + E / E * E / E = E / id

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Top-Down
Parser

With-Back
Tracking

Brute Force

Without
Backtracking

Predictive
Parser

LL(1)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Brute force technique

• Whenever a non- terminal is expanding first time, then go with the first
alternative and compare with the i/p string. if does not matches, go for the
second alternative and compare with i/p string, if does not matches go with the
3rd alternative and continue with each and every alternative.

• if the matching occurs for at least one alternative, then the parsing is successful,
otherwise parsing fail.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à cAd
A à ab / a
w1 = cad w2 = cada

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aAc / aB
A à b / c
B à ccd / ddc
w = addc

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• TDP may be constructed for both left factor and non-left factor grammar.

• If the grammar is non- deterministic, then we use brute technique and if the grammar
is deterministic, then we go with the predictive parser.

• Brute force requires lot of back-tracking, takes O(2n)

• Back Tracking is very costly & reduces the performance of parser

• Debugging is very difficult.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The TDP is constructed for a grammar, if there is less complexity, i.e. if the
complexity of grammar is more than the parsing mechanism is very slow and
performance is low.

• Worst case time complexity may go up to O(n4) in TDP except (Brute force).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• First(α) is a set of all terminals that may be in beginning in any
sentential form, derived from α

• FIRST(α) is calculated for both Terminals and Non-Terminals

• if α is a terminal, then
• First(α) = {α}

• if α is a string of terminal e.g. abc
• First(abc) = {a}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• if α is a non - terminal, defined by α à ε, then
• First(α) = {ε}

• if α is a non - terminal, defined by α à β, β Î T
• First(α) = {β}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• if α is a non - terminal, defined by α à X1 X2 X3, then
• First(α) = First(X1) iff X1 à! Î

• First(α) = [First(X1) U First(X2)] - Î iff X1 à Î && iff X2 à! Î

• First(α) = [First(X1) U First(X2) U First(X3)] - Î iff X1 à Î && X2 à Î && iff X3 à! Î

• First(α) = First(X1) U First(X2) U First(X2) iff X1 à Î && X2 à Î && iff X3 à Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following Grammar find the First for each of them?

S à a / b / ε

First(S) =

Follow(S) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aA / bB
A à ε
B à ε

First(S) =
First(A) =
First(B) =
Follow(S) =
Follow(A) =
Follow(B) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à AaB / BA
A à a / b
B à d / e

First(S) =
First(A) =
First(B) =
Follow(S) =
Follow(A) =
Follow(B) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à AaB
A à b / ε
B à c

First(S) =
First(A) =
First(B) =
Follow(S) =
Follow(A) =
Follow(B) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à AB
A à a / ε
B à b / ε

First(S) =
First(A) =
First(B) =
Follow(S) =
Follow(A) =
Follow(B) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à ABCDE
A à a / ε
B à b / ε
C à c / ε
D à d
E à e / ε

Follow(S) =
Follow(A) =
Follow(B) =
Follow(C) =
Follow(D) =
Follow(E) =

First(S) =
First(A) =
First(B) =
First(C) =
First(D) =
First(E) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

E à TE’
E’ à +TE’ / ε
T à FT’
T’ à *FT’ / ε
F à (E) / id

First(E) =
First(E’) =
First(T) =
First(T’) =
First(F) =

Follow(E) =
Follow(E’) =
Follow(T) =
Follow(T’) =
Follow(F) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aBDh
B à cC
C à bC / ε
D à EF
E à g / ε
F à f / ε

First(S) =
First(B) =
First(C) =
First(D) =
First(E) =
First(F) =

Follow(S) =
Follow(B) =
Follow(C) =
Follow(D) =
Follow(E) =
Follow(F) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

First(S) =

Follow(S) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

First(S) =
First(A) =
Follow(S) =
Follow(A) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

First(S) =
First(A) =
First(B) =
Follow(S) =
Follow(A) =
Follow(B) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

First(E) =
First(T) =
First(F) =
Follow(E) =
Follow(T) =
Follow(F) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

First(S) =
First(A) =
First(B) =
Follow(S) =
Follow(A) =
Follow(B) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

First(S) =

Follow(S) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

First(S) =
First(A) =
First(B) =
Follow(S) =
Follow(A) =
Follow(B) =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

E à TE’

E’ à +TE’ / Î

T à FT’

T’ à *FT’ / Î

F à (E) / id

+ * () id $
E

E’

T

T’

F

id + id * id $

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider a given Grammar LL(1) grammar design Parsing table and perform complete parsing
table?

E à TE’
E’ à +TE’ / Î
T à FT’
T’ à *FT’ / Î
F à (E) / id

w = id+id*id

Stack i/p Action
$ id+id*id$ Push E

$ E id+id*id$
Use Production EàTE’
POP E and Push E’T

$ E’T id+id*id$
Use Production TàFT’
POP T and Push T’F

$ E’T’F id+id*id$
Use Production Fàid
POP F and Push id

$ E’T’id id+id*id$
Match Pop id and
Increment Look Ahead Pointer

- - -

- - -

- - -

- - -

$ $ Accepted

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Block-Diagram of LL(1) Parser
• LL(1) parser consist of 3 components
• Input Buffer
• Parse Stack
• Parse Table

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Input Buffer
• it is divided into finite no of cells and each

cell is capable of holding only one i/p
symbol.

• input buffer contains only i/p string at any
point of time.

• the tape header is always pointing only
one look ahead symbol and after parsing
the current look ahead symbol, the
header moves to next cell towards right
side.

• End of the string is recognized by $

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Parse Stack
• it contains the grammar symbol, the

grammar symbol is pushed into stack or
POP from the stack based on the
occurrence of matching.

• if the topmost symbol of the stack is
matching with look ahead symbol, then the
grammar symbol is POP out from the stack.

• if the TOP most symbol of the stack is not
matching with the look ahead symbol, then
the grammar symbol is Pushed into stack.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Parse table
• it is a two-dimensional array of order m*n

where m = no of non-terminal and n = no of
terminals + 1

• parse table contains all the production
which are used to contain the parse tree for
that i/p string.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Procedure to constructed LL(1) parser Table:
• for every production A à α, repeat the following steps

• add A à α in M[A, α] for every terminal ‘α’ in first(A).

• if First(α) contains ε, then add A à ε in M[A, b] for every symbol, b in
Follow[A]

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Parsing Process
• Push the start symbol into stack
• Compare the top most symbol of the stack with the look ahead symbol
• If matching occurs, then pop of the grammar symbol from the stack and increment the i/p

pointer
• O/p the production which is used for expanding a non- terminal, i.e. the result is a

production which is used for push operation.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LL(1) parsing algorithm
• let x is a grammar symbol (stack symbol) and a is the look

ahead symbol

• if x == a == $, then the parsing is successful

• if x==a! = $, then pop of and increment the i/p pointer

• if x!= a!=$ and m[x, a] contain the production, x à abc, then
replace x by abc in the reverse order and continue the process.

• out of the production which is used for expanding the non-
terminal, i.e. the production which is used for PUSH operation

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LL(1) Grammar: Grammar for which LL(1) parser can be constructed is known as
LL(1) Grammar

• Or the Grammar whose LL(1) parse table does not contains multiple entries in
the same cell, then the grammar is LL(1)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Parser

Top-Down
Parser

With-Back
Tracking

Brute Force

Without
Backtracking

Predictive Parser

Recursive
Descent
Parser

LL(1)
Non-Recursive
Descent Parser

Bottom-UP
Parser

L-R
Parser

LR (0) SLR(1) CLR(1) LALR(1)

Operator
Precedence

Parser

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Bottom Up parser

• The process of constructing the parse tree in the Bottom-Up manner, i.e. starting
from the children & proceeding towards root.

• S à aABc
A à b / bc
B à d

• w = abcdc

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LR parsers were invented by Donald Knuth in 1965 as an
efficient generalization of precedence parsers. Knuth
proved that LR parsers were the most general-purpose
parsers possible.

• Donald Ervin Knuth (born January 10, 1938) is an
American computer scientist, mathematician,
and professor emeritus at Stanford University. He is the
1974 recipient of the ACM Turing Award, informally
considered the Nobel Prize of computer science. Knuth
has been called the "father of the analysis of algorithms".

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q A à aA / b
Action Goto

a a a b $

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Handle: - Substring of the i/p string that matches with RHS of any production, is
called as Handle.

• The process of finding the handle & replacing that handle by it’s LHS variable is
called Handle Pruning.

• Bottom-Up-Parser is also known as Shit-Reduced Parser.

• BUP can be constructed for both Ambiguous & Unambiguous grammar
• Ambiguous àOPP
• Unambiguous à LR(k)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LR(K) parser can be constructed for Unambiguous grammar.

• BUP Simulates the Reverse of Right Most Derivation.

• BUP can be constructed for the grammar which has more complexity.

• Bottom-up parsing is faster than Top-Up-Parsing, such that BUP is more efficient
than TDP.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Bottom Up Parser consist of three components
• i/p buffer
• Parse stack
• Parse table

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Input buffer: divide into cells & each cell contains only one i/p symbol.

• Stack: stack contains the grammar symbol, the grammar symbol are push into
stack or pop from the stack, using shift & reduced operation. if habdle occurs
from the topmost symbol of the stack, then apply the reduced operation & if
handle does not occurs in the topmost symbol of the stack, then apply the shift
operation.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Parse table: parse table is constructed using terminals, non-terminals & LR(0)
items. this parse table consist of two parts:
• Action
• Goto

• Action part contains shift & reduced operation over the terminals

• Goto part consists of only Shift operation over the Non-terminals.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Operation in shift/reduced passer
• shift
• reduced
• accept
• error

Action Goto
I0 Terminals Non-Terminals
In-1 Shift / Reduce Shift

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Shift: shift operation can be used when handle does not occurs from the
topmost symbol of the stack. using shift operation, will moving a look ahead
symbol in stack.

• Reduce: reduce operation can be whenever handle occurs from the Topmost
symbol from the stack. using reduced operation, we rename the topmost symbol
of the stack that matches with look-ahead symbol.

• Accept: after scanning the complete i/p string from the i/p buffer, if the stack
contains only the start symbol of the grammar as topmost symbol, then the i/p
string is accepted and the parsing is successful.

• Error: after the complete i/p string, if the attack contains any symbol which is
different from start symbol as a topmost symbol, then the parsing is unsuccessful
and hence error.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LR(K)
• First L stand for left to right scanning
• Second R stand for reverse of right most derivation
• K is Look-Ahead symbol

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Procedure for the construction of LR Parser table:
1. Obtain the augmented grammar for the given grammar
2. Create the canonical collection of LR items or compiler items.
3. Draw the DFA & prepare the table based on LR items.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Augmented grammar
• The grammar which is obtained by addition one more production that

generate the start symbol of the grammar, is known as Augmented
grammar.
• S à AB A à a Bà b
• S’ à S S à AB A à a Bà b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LR(0) or Compiler item
• The production, which has dot(.) anywhere on RHS is known as LR(0)

items.

• A à abc

• LR(0) items:
• A à .abc
• A à a.bc
• A à ab.c
• A à abc. Final / Completed items

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Canonical Collection:
• The set C = {I0, I1, I2, I3,………..IN} is known as canonical

collection of LR(0) items.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Function used to generate LR(0) item’s:
• Closure: i/p set of items & o/p also set of items
• GOTO

• Add everything from i/p to o/p
• If A à α. βB is in closure(I) & β à ϭ is in the grammar G

• Then add β à .ϭ to the closure(I)
• A à α. βB
• β à .ϭ

• Repeat the previous step for every newly added item

• Goto(I, X)
• Goto(I, X)
• Goto(A à α.Xβ, X) = A à αX.β

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Procedure to construct LR parse Table
• LR parse table consist of two parts

• Action
• Goto

• Action
• Action part consists of both shift & reduced operation that are performed on

terminals.

• Goto
• Goto parts consists of shift operation performed on Non-terminals

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Goto(Ii, X) = Ij (X is terminal)

Goto(Ii, X) = Ij (X is non-terminal)

If Ii is any final item & represent the production Ri,
then place Ri under all the terminal symbols in the
action part of the table.

X
Ii Sj

X
Ii j

t1 t2 t3 tn $
I ri ri ri ri ri

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à AA
A à aA / b

Action Goto

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

E à T + E / T
T à id

Action Goto

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

SLR(1)

• The procedure for constructing the parse table is similar to LR(0) parse, but there is a
restriction in the reducing entries.

• Whenever there is a final item, then placed the reduced entries under the follow symbol of
LHS symbol.

• If the SLR(1) parse table is free from multiple entries than the grammar is SLR(1) grammar.

• Every LR(0) grammar is SLR(1), but every SLR(1) grammar need not be LR(0)

• SLR(1) parser is more powerful then LR(0) parser

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à CC
C à cC
C à d

Action GotoCLR(1)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

CLR(1)
• LR(1) depends on one look Ahead symbol

• Closure(I):
• Add everything from i/p to o/p
• A à α.Bβ, $ is in closure I and β à ϭ is in the grammar G, then add β à .ϭ, first(β, $), to

the closure I
• repeat previous step for every newly added items

• Goto(I, x):
• there will not be any change in the goto part while finding the transition.
• these many be change in the follow or look Ahead part while finding the closure.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LR(1) grammar: the grammar for, which LR(1) is constructed is known as LR(1) or
CLR(1).

• the grammar whose LR(1) parse is free from multiple entries or conflicts, then it
is LR(1) grammar.

• Every SLR(1) grammar is CLR(1). but every CLR(1) grammar need not be SLR(1)

• CLR(1) is more powerful than SLR(1)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• In CLR(1) parser, we can find some of the state contains more than one
production whose production part is same but follow part is different.

• because of this reason, the CLR(1) parse contains more no of entries & hence
CLR(1) parser become most costly.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

LALR(1)

• In CLR(1) parser, there can ne more than one state, having same production part
and different follow part. Now combine those state whose production part is
common and follow part is different, it is a single state and then construct the
parse table, if the parse table is free from multiple entries, then the grammar is
LALR(1).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à Aa / bAc /dc /bda
A à d

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• if in CLR(1), if there are no states having some production, but
different follow part, the grammar is CLR(1) and LALR(1)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à Aa
S à bAc
S à Bc
S à bBa
A à d
B à d

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Operator Precedence Grammar

• Operator precedence parser can be constructed for both ambiguous and
unambiguous grammar.

• In general operator precedence grammar have less complexity
• Every CFG is not operator precedence grammar
• Generally used for languages which are useful in scientific application.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Operator Grammar is a context free grammar that has following properties
o Does not contain ε production

o No adjacent non-terminals on RHS of any production.

S à AB
A à a
B à b

S à AaB
A à a / ε
B à b

S à AaB
B à aA / b
A à b
B à a

S à AOB / int
O à + / * / -
A à b
B à a

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Algorithm for computing precedence function

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Now consider the string id + id * id
• We will insert $ symbols at the start and

end of the input string. We will also insert
precedence operator by referring the
precedence relation table.

• $ < · id · > + < · id · > * < id · > $
• We will follow following steps to parse the

given string :
• Scan the input from left to right until

first · > is encountered.
• Scan backwards over = until < · is

encountered.
• The handle is a string between < · and ·

>.

$ < · id · > + < · id · > * < · id · > $ Handle id is obtained between
<··>. Reduce this by E � id.

E + < · id · > * < · id · > $ Handle id is obtained between
<··>. Reduce this by E � id.

E + E * < · id · > $ Handle id is obtained between
<··>. Reduce this by E � id.

E+E*E Remove all the non-terminals.

+*
Insert $ at the beginning and at
the end. Also insert the
precedence operators.

$<·+<·*·>$

The * operator is surrounded
by <··>. This indicates that *
becomes handle. That means,
we have to reduce E * E
operation first.

$<·+·>$ Now + becomes handle. Hence,
we evaluate E + E.

$$ Parsing is done.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Algorithm for computing precedence function

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Aspect Top-Down Parsing Bottom-Up Parsing

Direction of Analysis Begins from the start symbol and works
towards the leaves of the syntax tree.

Starts from the leaves (input symbols) and
works towards the root of the syntax tree.

Parse Tree Construction Constructs the parse tree from the top
(root) to the bottom (leaves).

Constructs the parse tree from the bottom
(leaves) to the top (root).

Type of Grammar Used Generally uses non-left-recursive
grammars.

Can handle a more extensive range of
grammars, including left-recursive grammars.

Example Methods
Recursive Descent Parsing, LL(k) Parsing
(where k is the number of lookahead
tokens).

LR(k) Parsing (including SLR, LALR, CLR),
Operator-precedence parsing.

Handling Ambiguity Less efficient in handling ambiguity and
requires backtracking in some cases.

More efficient in handling ambiguous
grammars and reduces the need for
backtracking.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Chapter-3
(SYNTAX-DIRECTED TRANSLATION): Syntax-directed Translation
schemes, Implementation of Syntax- directed Translators,
Intermediate code, postfix notation, Parse trees & syntax trees,
three address code, quadruple & triples, translation of
assignment statements, Boolean expressions, statements that
alter the flow of control, postfix translation, translation with a
top down parser. More about translation: Array references in
arithmetic expressions, procedures call, declarations and case
statements.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Semantic Analysis

Input and output: Semantic analysis takes an Abstract Syntax Tree (AST) generated
by the syntax analysis phase as its inputs.

Process: It performs type checking, scope resolution, and validates semantic
consistency, ensuring that the operations and expressions in the source code are
according to the language's rules and semantics.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Semantic Analysis
• Grammar + Semantic Rule + Semantic Actions = Syntax Directed Translation. SDT is the

generalization of CFG.

• With grammar we give meaningful rules, and apart from semantic analysis SDT can also be
used to perform things like
• Code generation
• Intermediate code generation
• Value in the symbol table
• Expression evaluation
• Converting infix to post fix

• Things can be done in parallel to parsing…so with semantic action and rule parsers become
much powerful

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar along with translation rules. Here # and % are operators and id is a
token that represents an integer and id•val represents the corresponding integer value. The set of non-
terminals is {S,T, R, P} and a subscripted non-terminal indicates an instance of the non-terminal.Using this
translation scheme, the computed value of S •val for root of the parse tree for the expression 20 #10%5
#8%2%2 is _____________.

20 #10%5 #8%2%2

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the grammar with the following translation rules and E as the start
symbol.
E → E1 # T { E.value = E1.value * T.value }
E → T{ E.value = T.value }
T → T1 & F { T.value = T1.value + F.value }
T → F{ T.value = F.value }
F → num { F.value = num.value }
Compute E.value for the root of the parse tree
for the expression: 2 # 3 & 5 # 6 & 4.

2 # 3 & 5 # 6 & 4

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the grammar with the following translation rules and E as the start
symbol.
E → E1 + T {print ('+’);}
E → T
T → T1 * F {print ('*’);}
T → F
F → num {print ('num.val');}
Construct the parse tree for the
string 2 + 3 * 4, and find what will
be printed.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the translation scheme shown below S → T R
R → + T {print ('+');} R / ε
T → num {print (num.val);}
Here num is a token that represents an integer and num.val represents the
corresponding integer value. For an input string ‘9 + 5 + 2ʹ, this translation scheme
will print

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following translation scheme.
S → ER
R → *E{print(“*”);}R | ε
E → F + E {print(“+”);} | F
F → (S) | id {print(id.value);}
Here id is a token that represents an integer and id.value represents the
corresponding integer value. For an input ‘2 * 3 + 4ʹ, this translation scheme prints

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following Syntax Directed Translation Scheme (SDTS),
with non-terminals {S, A} and terminals {a, b}}. Using the above SDTS,
the output printed by a bottom-up parser, for the input ‘aab’ is

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Attributes
• Attributes attach relevant information like strings, numbers, types, memory

locations, or code fragments to grammar symbols of a language, which are used
as labels for nodes in a parse tree.

• The value of each attribute at a parse tree node is determined by semantic rules
associated with the production applied at that node, defining the context-
specific information for the language construct.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Classification of Attributes
• Based on the process of Evaluation of the values, attributes are classified

into two types:
• Synthesised Attributes

• Inherited Attributes

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Synthesized attributes are derived from a node's children within a
parse tree, and a syntax-directed definition relying solely on these
attributes is termed as S-attributed.

• S-attributed definitions allow parse trees to be annotated from the
leaves up to the root, enabling parsers to directly evaluate semantic
rules during the parsing process.

• A à XYZ {A.S = f(X.S / Y.S / Z.S)}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Inherited Attributes: The attribute whose values are evaluated in terms
of attribute value of parents & Left siblings is known as inherited
attributes.

• Inherited attributes are convenient for expressing dependence of a
programming language construct on the context in which it appears.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Synthesized Attributes Inherited Attributes

Computed from the attribute values of a
node's children in the parse tree.

Computed from the attribute values of a
node's siblings and parent.

Used to pass information up the parse tree. Used to pass information down or across
the parse tree.

Examples include the evaluated value of an
expression or the size of a data type.

Examples include the data type expected for
a child node or the environment in which a
node should be evaluated.

Often associated with bottom-up parsing
techniques like LALR or SLR.

Often associated with top-down parsing
techniques such as LL parsers.

They do not need context from parent
nodes, only from children and the node
itself.

They require context from parent or
surrounding nodes to be computed.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S-Attributed SDT L-Attributes SDT
Uses only Synthesized attributes Uses both inherited and synthesised

attributes. Each inherited attribute is
restricted to inherit either form parent or left
sibling only.

Semantic actions are placed at extreme right
on right end of production

Semantic actions are placed anywhere on
right hand side of the production.

Attributes are evaluated during BUP Attributes are evaluated by traversing parse
tree depth first left to right.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Intermediate Code Generation
• Intermediate code generation in compilers creates a machine-independent, low-level

representation of source code, facilitating optimization and making the compiler design more
modular. This abstraction layer allows for:
• Portability: Easier adaptation of the compiler to different machine architectures, as only

the code generation phase needs to be machine-specific.
• Optimization Opportunities: More efficient target code through optimizations performed

on the intermediate form rather than on high-level source or machine code.
• Ease of Compiler Construction: Simplifies the development and maintenance of the

compiler by decoupling the source language from the machine code generation.

• x = y+ z*60
t1 = z * 60
t2 = y + t1
x = t2

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Intermediate Code Generation

Intermediate
Code

Linear Form

PostFix Three
address code

Tree Form

Syntax tree DAG

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Draw syntax tree for the arithmetic expressions : a * (b + c) – d/2. Also
write the given expression in postfix notation ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

(a+b) * (a + b + c)
 Post fix

ab+ab+c+*

Syntax Tree Direct Acyclic GraphThree address code
t1 = a+b
t2 = a+b
t3 = t2 + c
t4 = t1 * t3

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

3 Address Code
• Three-address code is a type of intermediate code where each instruction can

have at most three operands and one operator, like a := b op c. It simplifies
complex operations into a sequence of simple statements, supporting various
operators for arithmetic, logic, or boolean operations.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

3 Address Code
Types of 3 address codes
1) x = y operator z
2) x = operator z
3) x = y
4) goto L
5) A[i] = x
 y = A[i]
6) x = *p
 y = &x

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• 3 address codes can be implemented in a number of ways

-(a + b) * (c + d) + (a + b + c)

1) t1 = a+b
2) t2 = -t1
3) t3 = c+d
4) t4 = t2 * t3
5) t5 = a+b
6) t6 = t5 + c
7) t7 = t4 + t6

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Quadruples
Operator Operand1 Operand2 Result

1) + a b t1

2) - t1 t2

3) + c d t3

4) * t2 t3 t4

5) + a b t5

6) + t5 c t6

7) + t4 t6 t7

• Advantage
o statement can be moved around

• Disadvantage
o too much of space is wasted

1) t1 = a+b
2) t2 = -t1
3) t3 = c+d
4) t4 = t2 * t3
5) t5 = a+b
6) t6 = t5 + c
7) t7 = t4 + t6

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Triplet

• Advantage
• Space is not wasted

• Disadvantage
• Statement cannot be moved

Operator Operand1 Operand2

1) + a b
2) - 1
3) + c d
4) * 2 3
5) + a b
6) + 5 c
7) + 4 6

1) t1 = a+b
2) t2 = -t1
3) t3 = c+d
4) t4 = t2 * t3
5) t5 = a+b
6) t6 = t5 + c
7) t7 = t4 + t6

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Indirect Triplet
Triple can be separated by order of execution and uses the pointers concepts

• Advantage
• Statement can be moved

• Disadvantage
• two memory access

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Write the quadruples, triple and indirect triple for the following
expression : (x+y)* (y+z)+(x+y+z) ?

Index Operator Arg1 Arg2 Result
1 + x y t1
2 + y z t2
3 * t1 t2 t3
4 + x y t4
5 + t4 z t5
6 + t3 t5 t6

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Write the quadruples, triple and indirect triple for the following
expression : (x+y)* (y+z)+(x+y+z) ?

Index Operator Arg1 Arg2
0 + x y
1 + y z
2 * 0 1
3 + x y
4 + 3 z
5 + 2 4

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Write the quadruples, triple and indirect triple for the following
expression : (x+y)* (y+z)+(x+y+z) ?

Index Operator Arg1 Arg2

0 + x y

1 + y z

2 * 0 1

3 + x y

4 + 3 z

5 + 2 4

Pointer Index

p0 0
p1 1
p2 2
p3 3
p4 4
p5 5

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

One Dimensional array
• Address of the element at kth index
• a[k] = B + W*k
• a[k] = B + W*(k – Lower bound)

• B is the base address of the array
• W is the size of each element
• K is the index of the element
• Lower bound index of the first element of the

array
• Upper bound index of the last element of the

array

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

if(a, b) then t=1
else t = 0

i) if (a<b) goto (i+3)
i+1) t=0
i+2) goto (i+4)
i+3) t=1
i+4) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

while(C) do S

i) if (E) goto i+2
i+1) goto i+4
i+2) S
i+3) goto i
i+4) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

for(1=0; i<10 ; i++)
 s

i) i = 0
i+1) if(i<10) goto i+3
i+2) goto i+6
i+3) S
i+4) i = i + 1
i+5) goto i+1
i+6) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Generate three address code for the following code :
switch a + b
{
 case 1 : x = x + 1
 case 2 : y = y + 2
 case 3 : z = z + 3
 default : c = c – 1
}

101:t1 =a+b goto 103
102 : goto 115
103 : t = 1 goto 105
104 : goto 107
105:t2 =x+1
106 : x = t2

107 : if t = 2 goto 109
108 : goto 111
109:t3 =y+2
110 : y = t3

111 : if t = 3 goto 113
112 : goto 115 113:t4 =z+3
114 : z = t4

115:t5 =c–1
116 : c = t5

117 : Next statement

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the grammar with the following translation rules and E as the start symbol.
E → E1 + T { E.nptr = mknode(E1.nptr, +, T.ptr);}
E → T{ E.nptr = T.nptr }
T → T1 * F { T.nptr = mknode(T1.nptr, *, F.ptr);}
T → F{ T.nptr = F.nptr }
F → id { F.nptr = mknode(null, id name, null);}

Construct the parse tree for the expression: 2+3*4

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Types of 3-address Statements in intermediate Code
Assignment Statement X = y op z

Assignment Instruction X = op y

Copy Statement X = y

Unconditional Jump Goto L

Conditional Jump If x relop y goto L

Procedure Call Parm x1
Parm x2
.
Parmxn
Call p,n
Return y

Array Statement X = y[i]
X[i] = y

Address and Pointer Assignment X=&y
X=*y
*x=y

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Syntax Tree: An abstract representation of the syntactic structure of a program, omitting syntactical elements like
brackets and punctuation.

• Parse Tree: A detailed tree diagram showing all the syntactical elements of a program, including brackets,
punctuation, and keywords.

• Annotated Parse Tree: A parse tree enhanced with additional information like values, types, or variable bindings,
useful for semantic analysis and code generation.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

SDT of Boolean Expression

E à E1 OR E2
E.place=newtemp();
Emit(E.place=E1.place ‘or’ E2.place);

E à E1 AND E2
E.place=newtemp();
Emit(E.place=E1.place ‘and’ E2.place);

E à NOT E1
E.place=newtemp();
Emit(E.place= ‘not’ E1.place);

E à (E1) E.place=E1.place;

E à TRUE E.place=newtemp();
Emit(E.place=‘1’);

E à FALSE E.place=newtemp();
Emit(E.place=‘0’);

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Production rule Semantic actions

S à id := E
{ id_entry := look_up(id.name);

if id_entry != nil then
append (id_entry ‘:=’ E.place)

else error; /* id not declared*/ }

EàE1 +E2
{ E.place := newtemp();

append (E.place ‘:=’ E1.place ‘+’ E2.place) }

EàE1 *E2
{ E.place := newtemp();

append (E.place ‘:=’ E1.place ‘*’ E2.place) }

E à – E1
{ E.place := newtemp();

append (E.place ‘:=’ ‘minus’ E1.place) }

E à (E1) { E. place:= E1.place }

E à id
{ id_entry: = look_up(id.name);

if id_entry != nil then
append (id_entry ‘:=’ E.place)

else error; /* id not declared*/ }

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

SDT for Flow Control

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

SDT for Flow Control

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Production rule Semantic action

Switch E
{

case v1 : s1

case v2 : s2 ...

case vn–1 : sn–1

default : sn

}

Evaluate E into t such that
t = E goto check
L1 : code for s1 goto last

L2 :code for s2 goto last

Ln :code for sn goto last

check:if t=v1 goto L1

if t = v2 goto L2
...
if t = vn–1 goto Ln–1

g goto Ln
last

switch(ch)
{
 case 1 : c = a + b;
 break;
 case 2 : c = a – b;
 break;
}

if ch = 1 goto L1

if ch = 2 goto L2

L1: t1:=a+b
 c := t1

 goto last
L2 : t2 := a – b
 c := t2

 goto last

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Backpatching
• Backpatching is an essential technique used during the generation of three-

address code in compiler design, especially in single-pass compilers.

• Backpatching: It's a method used in single-pass generation of three-address
code where the address for jump statements is temporarily left unspecified due
to unknown labels; backpatching later fills these addresses with correct values
once the target labels are determined during the code generation process.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

if(a, b) then t=1
else t = 0

i) if (a<b) goto (i+3)
i+1) t=0
i+2) goto (i+4)
i+3) t=1
i+4) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

while(C) do S

i) if (E) goto i+2
i+1) goto i+4
i+2) S
i+3) goto i
i+4) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

for(1=0; i<10 ; i++)
 s

i) i = 0
i+1) if(i<10) goto i+3
i+2) goto i+6
i+3) S
i+4) i = i + 1
i+5) goto i+1
i+6) exit

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Chapter-4
(SYMBOL TABLES): Data structure for symbols
tables, representing scope information. Run-
Time Administration: Implementation of simple
stack allocation scheme, storage allocation in
block structured language. Error Detection &
Recovery: Lexical Phase errors, syntactic phase
errors semantic errors.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Definition:- The symbol table is a data structure used by a compiler to store
information about the source program's variables, functions, constants, user-
defined types, and other identifiers.

• Need:- It helps the compiler track the scope, life, and attributes (like type, size,
value) of each identifier. It is essential for semantic analysis, type checking, and
code generation.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The information is collected by the analysis phases of the compiler and used
by the synthesis phases of the compiler.
• Lexical Analysis:- Creates new table entries
• Syntax Analysis:- add information about attributes types, scope and use in

the table.
• Semantic Analysis:- to check expression are semantically correct and type

checking.
• Intermediate Code Generation:-symbol table helps in adding temporary

variable information in code.
• Code Optimization:- use symbol table in machine dependent optimization.
• Code Generation:- uses address information of identifier present in the

table for code generation.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Information used by compiler from symbol table
• Data type and name.
• Declaring procedure.
• Pointer to structure table or record.
• Parameter passing by value or by reference.
• No and types of argument passed to function.
• Base address.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

A symbol table should possess these essential functions:
• Lookup: This function checks if a specific name exists in the table.
• Insert: This allows the addition of a new name (or a new entry) into the table.
• Access: It enables retrieval of information associated with a specific name.
• Modify: This function is used to update or add additional information about an

already existing name.
• Delete: This capability is for removing a name or a set of names from the table.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Important symbol table requirements

• Adaptive Structure: Entries must be comprehensive, reflecting each identifier's
specific use.

• Quick Lookup/Search: High-speed search functionality is essential, dependent
on the symbol table's design.

• Space-Efficient: The table should dynamically adjust in size for optimal space
use.

• Language Feature Accommodation: It needs to support language-specific
aspects like scoping and implicit declarations.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Different data structures used in implementing a symbol table
• Unordered List:

• Easy to implement using arrays or linked lists.
• Linked lists allow dynamic growth, avoiding fixed size constraints.
• Quick insertion O(1) time, but slower lookup O(n) for larger tables.

Student Name Age
John 20

Maria 19
Alex 21

Sarah 18
Brian 22

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Different data structures used in implementing a symbol table
• Ordered List:

• Binary search on a sorted array enables faster search O(log2n).
• Insertion is slower O(n) due to sorting.
• Beneficial for fixed sets of names, like reserved words.

Variable Name Data Type
age int

height float
name string
score double
width float

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Different data structures used in implementing a symbol table
• Search Tree:

• Offers logarithmic time for operations and lookup.
• Balancing is achieved through AVL or Red-black tree algorithms.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Different data structures used in implementing a symbol table
• Hash Tables and Hash Functions:
• Hash tables map elements to a fixed range of values (hash values) using

hash functions.
• They minimize element movement within the symbol table.
• Hash functions ensure a uniform distribution of names.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Symbol table and its entries
• Variables:

• Identifiers with changeable values during and between program executions.
• Represent memory location contents.
• Symbol table tracks their names and runtime storage allocation.

• Constants:
• Identifiers for immutable values.
• Runtime storage allocation is unnecessary.
• Compiler embeds them directly into the code during compilation.

• User-Defined Types:
• Combinations of existing types defined by the user.
• Accessed by name, referring to a specific type structure.

• Classes:
• Abstract data types offering controlled access and language-level polymorphism.
• Include information about constructors, destructors, and virtual function tables.

• Records:
• Collections of named, possibly heterogeneous members.
• Symbol table likely records each member within a record.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Representing Scope Information

• Scope of Identifiers: Scope defines where in a program an identifier is valid and accessible.
• Language-Dependent Scope: Different programming languages have varying scopes. For

instance, in FORTRAN, a name's scope is limited to a single subroutine, while in ALGOL, it's
confined to the section or procedure where it's declared.

• Multiple Declarations: An identifier can be declared multiple times in different scopes as
distinct entities, each with unique attributes and storage locations.

• Symbol Table's Role: The symbol table maintains the uniqueness of each identifier's
declarations.

• Unique Identification: Each program element is assigned a unique number, which helps in
differentiating local data in different scopes.

• Scope Determination: Semantic rules from the program's structure are utilized to identify the
active scope, especially in subprograms.

• Scope-Related Semantic Rules: a. An identifier's usage is confined to its defined scope. b.
Identifiers with the same name and type cannot coexist within the same lexical scope.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Scope of variables in statement blocks

• Scope of formal arguments of functions

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Scoping in Programming Languages

• Scoping refers to the rules that govern the visibility and lifespan of variables and
functions within different parts of a program. It defines the context in which an
identifier, such as a variable or function name, is valid and accessible.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Aspect Lexical Scoping Dynamic Scoping

Determination Time At compile time. At runtime.

Scope Basis Location in source code. Calling sequence of
functions.

Predictability High; scope is clear
from code structure.

Low; depends on
program's execution
path.

Variable Accessibility Determined by code
blocks and functions.

Influenced by function
call order.

Common Usage Preferred in most
modern languages.

Less common; found in
older languages.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Run-Time Administration: Implementation of simple stack allocation scheme

• The activation record is crucial for handling data necessary for a procedure's
single execution. When a procedure is called, this record is pushed onto the
stack, and it's removed once control returns to the calling function.

Return value
Actual parameters

Control link
Access link

Saved machine status
Local data

Temporaries

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Activation record fields include:
• Return Value: Allows the called procedure to return a

value to the caller.
• Actual Parameters: Used by the caller to provide

parameters to the called procedure.
• Control Link: Connects to the caller's activation record.
• Access Link: References non-local data in other

activation records.
• Saved Machine Status: Preserves machine state prior

to the procedure call.
• Local Data: Contains data specific to the procedure's

execution.
• Temporaries: Stores interim values during expression

evaluation.

Return value
Actual parameters

Control link
Access link

Saved machine status
Local data

Temporaries

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Overview of Memory Allocation Methods in Compilation

• Code Storage:
• Contains fixed-size, unchanging executable target code

during compilation.
• Static Allocation:
• Allocates storage for all data objects at compile time.
• Object sizes are known at compile time.
• Object names are bound to storage locations during

compilation.
• The compiler calculates the required storage for each object,

simplifying address determination in the activation record.
• Compiler sets up addresses for the target code to access

data at compile time.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Overview of Memory Allocation Methods in
Compilation

• Heap Allocation Methods:
• Garbage Collection:
• Handles objects that persist after losing all access

paths.
• Reclaims object space for reuse.
• Garbage objects are identified by a 'garbage

collection bit' and returned to free space.
• Reference Counting:
• Reclaims heap storage elements as soon as they

become inaccessible.
• Each heap cell has a counter tracking the number of

references to it.
• The counter is adjusted as references are made or

removed.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Overview of Memory Allocation Methods in
Compilation

• Stack Allocation:
• Manages data structures known as activation records.
• Activation records are pushed onto the stack at call time

and popped when the call ends.
• Local variables for each procedure call are stored in the

respective activation record, ensuring fresh storage for
each call.

• Local values are removed when the procedure call
completes.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Overview of Error Recovery in Compilers
Error Recovery Significance:
• Essential for compilers to process and execute programs even with errors.

Error Message Characteristics:
• Messages should relate to the original source code, not its internal

representation.
• Simplicity is key in error messaging.
• Precision in pinpointing and fixing errors is crucial.
• Avoid repetition of the same error message.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Objectives of Error Handling:
• Identify errors and provide clear, useful diagnostics.
• Rapid recovery to identify further errors in the code.
• Ensuring error handling doesn't substantially delay the compilation of

correct programs.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Lexical Phase Errors in Compiling

• Definition of Lexical Phase Error:
• Occurs when a sequence of characters doesn't form a recognizable token

during the source program scanning, preventing valid token generation.
• Common Causes of Lexical Errors:
• Adding an unnecessary character.
• Omitting a required character.
• Substituting a character incorrectly.
• Swapping two characters.

• Examples of Lexical Errors:
• In Fortran, identifiers exceeding 7 characters are considered lexical errors.
• The presence of characters like ~, &, and @ in a Pascal program constitutes a

lexical error.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Syntactic Phase Errors (Syntax Errors)

• Overview of Syntax Errors:
• Syntax errors occur due to coding mistakes made by programmers.

• Common Sources of Syntax Errors:
• Omitting semicolons.
• Imbalanced parentheses and incorrect punctuation usage.

• Example:
• Consider the code snippet: int x; int y //Syntax error
• The error arises from the missing semicolon after int y.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Semantic Phase Errors
• Definition of Semantic Errors:
• Semantic errors relate to incorrect use of program statements, impacting the

program's meaning or logic.

• Typical Reasons for Semantic Errors:
• Using undeclared names.
• Type mismatches.
• Inconsistencies between actual and formal arguments in function calls.

• Example:
• In the code scanf(“%f%f”, a, b);, the error lies in not using the addresses of

variables a and b. The correct usage should be scanf(“%f%f”, &a, &b); to
provide the address locations.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Logical Errors(Run Time Error) in Programming

• Nature of Logical Errors:
• Logical errors are mistakes in a program's logic that the compiler does not

catch.
• These errors occur in programs that are syntactically correct but do not

function as intended.
• Example of a Logical Error:
• Consider the code snippet:

x = 4;
y = 5;
average = x + y / 2;

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Basics of Panic Mode Recovery

• A straightforward and commonly used method in various parsing techniques.
• Upon detecting an error, the parser discards input symbols until it encounters a

synchronizing token from a predefined set.

• Characteristics:
• Panic mode may bypass large sections of input without further error

checking.
• This approach ensures that the parser does not enter an infinite loop.
• a = b + c;
• d = e + f;
• In panic mode, the parser might skip over the entire line a = b + c; without

identifying specific errors in it.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Phrase-Level Recovery

• This method involves making localized corrections to the input when an error is
detected by the parser.

• It involves substituting a part of the input with a string that allows the parser to
proceed.

• Correction Mechanism:
• Common corrections include replacing a comma with a semicolon, removing

an unnecessary semicolon, or inserting a missing one.
• while(x>0)
• y=a+b;

• Phrase-level recovery might correct this by adding 'do' to form while(x>0) do
y=a+b;, enabling the parsing process to continue smoothly.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Error Production
• Overview of Error Production:
• This technique allows a parser to generate relevant error messages while

continuing the parsing process.
• Functionality:
• When the parser encounters an incorrect production, it issues an error message

and then resumes parsing.
• E → + E | - E | * A | / A
• A → E
• If the parser comes across the production '* A' and deems it incorrect, it can alert

the user with a message, perhaps querying whether '*' is intended as a unary
operator, before continuing with the parsing.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Global Correction in Parsing

• Nature of Global Correction:
• Primarily a theoretical concept in the realm of parsing.

• Implications on Parsing Process:
• Utilizing global correction significantly increases both the time and space

resources required during the parsing stage.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Error Recovery in Operator Precedence Parsing

• Detection Points in Operator Precedence Parsing:
• Errors are identifiable at two key stages:
• When there's no precedence relation between the terminal at the top of

the stack and the current input symbol.
• When a handle is identified, but no corresponding production exists.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Error Recovery in Operator Precedence Parsing

• Error Types and Diagnostics: The parser can detect several types of errors:
• Errors Detected During Reduction:
• Missing operand.
• Missing operator.
• Absence of expression within parentheses.

• Errors Detected During Shift/Reduce Actions:
• Missing operand.
• Unbalanced or missing right parenthesis.
• Missing operators.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Chapter-5
(CODE GENERATION): Design Issues, the Target Language.
Addresses in the Target Code, Basic Blocks and Flow Graphs,
Optimization of Basic Blocks, Code Generator. Code
optimization: Machine-Independent Optimizations, Loop
optimization, DAG representation of basic blocks, value numbers
and algebraic laws, Global Data-Flow analysis.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Code Generation
• Code generation is the process of converting the intermediate representation (IR)

of source code into a target code(assembly level). Which is also optimized.

• It involves translating the syntax and semantics of the high-level language into
assembly level code, typically after the source code has passed through lexical
analysis, syntax analysis, semantic analysis, and intermediate code generation.

int main() {
 int a = 5;
 int b = 3;
 int sum = a + b;
}

t1 = 5
t2 = 3
t3 = t1 + t2

MOV R1, 5
MOV R2, 3
ADD R3, R1, R2;

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Code Generator Input:
• Uses the source program's intermediate representation (IR) and symbol table data.

• Intermediate Representation (IR):
• Consists of three-address and graphical forms.

• Target Program:
• Influenced by the target machine's instruction set architecture (ISA).
• Common ISAs: RISC, CISC, and stack-based.

• Instruction Selection:
• Converts IR to executable code for the target machine.
• High-level IR may use code templates for translation.

• Register Allocation:
• Critical to decide which values to store in registers.
• Non-registered values stay in memory.
• Register use leads to shorter, faster instructions.
• Involves two steps: i. Choosing variables for register storage. ii. Assigning specific registers to

these variables.
• Evaluation Order:

• The sequence of computations impacts code efficiency.
• Some sequences minimize register usage for intermediate results.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Optimization: During code generation, various optimization techniques are
applied to improve efficiency and performance. This could include optimizing
for speed, memory usage, or even power consumption.

• Target Platform: The generated code is specific to the target platform's
architecture, such as x86, ARM, etc. This means the same high-level code will
have different generated machine code for different platforms.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Optimization

• Process of reducing the execution time of a code without effecting the
outcome of the source program, is called as optimization.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Optimization

Machine
Independent

Loop
Optimization

Loop Unrolling Loop Jamming Code
movement

Constant
Folding

Constant
Propogation

Strength
reduction

Redundancy
Elimination

Algebraic
Simplification

Machine
Dependent

Register
allocation

Use of
addressing

mode

Peephole
Optimization

Redundant
load

Flow of
control

optimization

Strenght
reduction

Use of
Machine

idoms

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Aspect Machine-Independent Optimization Machine-Dependent Optimization

Definition Optimizations that are not specific to any
processor or machine architecture.

Optimizations tailored to the specifics of a
particular machine or processor architecture.

Focus
Concentrates on improving the logic and
efficiency of the code at a high level, often in
the intermediate code.

Focuses on enhancing performance by taking
advantage of the unique features and
instructions of the target machine.

Examples
Common subexpression elimination, Code
motion, Dead code elimination, Loop unrolling,
Loop fusion

Instruction scheduling, Register allocation,
Pipeline optimization, Use of machine-specific
instructions, Cache optimization

Portability
Highly portable across different architectures
as they do not rely on machine-specific
features.

Not portable; optimizations must be re-applied
or altered for different architectures.

Stage of
Application

Applied before the code is mapped to the
target machine's instruction set, often during
the intermediate code generation phase.

Applied during or after the generation of the
target machine code, tailoring the optimizations
to the specifics of the machine's hardware.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Algorithm to partition a sequence of three address statements into basic blocks

• Loop Optimization
• To apply loop optimization, we must first detect loops.
• For detecting loops, we use control flow analysis (CFA) using program flow

graph (PFG)
• To find PFG, we need to find basic blocks.
• A Basic block is a sequence of 3-adress statements where control enters at

the beginning and leaves only at the end without any jumps or halts

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The block can be identified with the help of leader
• Finding the leader
• Finding the bocks
• Construct PFG

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• In order to find the basic blocks, we need to finds the leader in the program then
a basic block will start from one leader to the next leader but not including next
leader.

• identifying leaders in a basic block
• First statement is a leader
• Statement that is the target of conditional or unconditional statement is a

leader
• Statement that follow immediately a conditional or unconditional statement

is a leader

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Fact(x)
{
 int f=1
 for(i=2 ; i<=x ; i++)
 f = f*i;
 return f;
}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

1) f=1;
2) i=2
3) if(i>x), goto 9
4) t1=f*i;
5) f=t1;
6) t2=i+1;
7) i=t2;
8) goto(3)
9) goto calling program

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

1) f=1;
2) i=2

3) if(i>x), goto 9

4) t1=f*i;
5) f=t1;
6) t2=i+1;
7) i=t2;
8) goto(3)

9) goto calling program

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the intermediate code given below: The number of nodes and edges in the control-
flow-graph constructed for the above code, respectively, are

1. i = 1

2. j = 1

3. t1 = 5 * i

4. t2 = t1 + j

5. t3 = 4 * t2

6. t4 = t3

7. a[t4] = –1

8. j = j + 1

9. if j <= 5 goto(3)

10. i = i + 1

11. if i < 5 goto(2)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following sequence of three address codes :

1.Prod:=0
2.I:=1
3.T1:=4*I
4.T2:=addr(A)–4
5.T3:=T2[T1]
6.T4:=addr(B)–4
7.T5:=T4[T1]
8.T6:=T3*T5
9.Prod:=Prod+T6
10. I=I+1
11. If I <= 20 goto (3)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Loop Jamming: combining the bodies of two loops, whenever they share the same index and
same no of variables

for (int i=0; i<=10; i++)
 for (int j=0; j<=10; j++)
 x[i, j]=”TOC”
for (int j=0; j<=10; j++)
 y[i]=”CD”

for (int i=0; i<=10; i++)
{
 for (int j=0; j<=10; j++)
 {
 x[i, j]=”TOC”
 }
 y[i]=”CD”
}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Loop Unrolling: getting the same output with less no of iteration is called loop unrolling
int i=1;
while(i<=100)
{
 print(i)
 i++
}

int i=1;
while(i<=100)
{
 print(i)
 i++
 print(i)
 i++
}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Code movement(Loop invariant computation): removing those code
out from the loop which is not related to loop.

int i=1;
while(i<=100)
{
 a =b+c
 print(i)
 i++
}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Optimization of basic blocks

• Algebraic Simplification
• Redundant code Elimination / Common subexpression elimination
• Strength reduction
• Constant Propagation
• Constant Folding

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Constant Folding: Replacing the value of expression before
compilation is called as constant folding
x = a + b + 2 * 3 + 4
x = a + b + 10

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Constant Propagation: replacing the value of constant before
compile time, is called as constant propagation.
pi = 3.1415
x = 360 / pi
x = 360/3.1415

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Strength reduction: replacing the costly operator by cheaper
operator, this process is called strength reduction.
y = 2 * x
y = x + x

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Redundant code Elimination / Common subexpression elimination:
Avoiding the evaluation of any expression more than once is redundant
code elimination.
x = a + b
y = b + a

x = a + b
y = x

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Algebraic Simplification: Basic laws of math’s which can be solved
directly.
a = b*1
a=b

a=b+0
a=b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Direct Acyclic Graph (DAG)
• A Direct Acyclic Graph is a graph that is directed and contains no cycles. So it is impossible to

start at any vertex v and follow a sequence of edges that eventually loops back to v again.

• By representing expressions and operations in a DAG, compilers can easily identify and
eliminate redundant calculations, thus optimizing the code.
• We automatically detect common sub-expressions with the help of DAG algorithm.
• We can determine which identifiers have their values used in the block.
• We can determine which statements compute values which could be used outside the

block.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

((a+a) + (a+a)) + ((a+a) + (a+a))

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

